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1  Scope of the Chapter

This chapter provides functions for investigating and modelling the statistical structure of series of
observations collected at equally spaced points in time. The models may also be used to forecast values for
the series. The functions for model fitting and forecasting cover both univariate time series and the analysis
of a single output series depending on a number of independent input series. This chapter also contains
functions for the construction of Kalman filters for state space models. The chapter only includes time
domain methods; no frequency domain or spectral methods are included.

2 Background

A time series is a set of measurements of a variable recorded over that time. We assume that measurements
are obtained at equally spaced points in time to provide a sample x,x3,...,z, of length n.

Interest usually focuses on describing or modelling the structure of the series. The aim of the analysis may
be to forecast or extrapolate the sample into the future. Probability limits or estimated errors should also be
computed to reflect the uncertainty associated with the forecasts. Other areas of application include
decomposition of the series into various components, simulation of series based on the model, and control
of a series.

The first step in the analysis of time series is to graph the series. This may reveal the structure of the series
in terms of various components or features, which are evident to the eye. The graph may show:

(a) trends — linear or higher order polynomial.

(b) seasonal patterns associated with fixed integer seasonal periods. The presence of seasonality and the
period is usually known a priori. The pattern may be fixed or slowly varying from season to season.

(c) cycles, or waves of stable amplitude and period.
(d) quasi-cycles, i.e., waves of fluctuating period and amplitude.

(e) noise — irregular statistical fluctuations and swings about the overall mean or trend, due to
observational error or sampling variability.

Trends, seasonal patterns, and cycles might be regarded as deterministic components following fixed
mathematical equations, and the quasi-cycles and other statistical fluctuations as stochastic and describable
by short term correlation structure. For finite data sets it is not always easy to distinguish between
deterministic and stochastic components. The class of autoregressive integrated moving-average (ARIMA)
models is widely used to describe the structure; these models are in the form of difference equations (or
recurrence relations) relating past and present values of the series. For a thorough account of these models,
see Box and Jenkins (1976).

ARIMA models assume that the variance of the noise is constant over time. There are many situations,
particularly in financial time series, where the variance (or volatility) is known to fluctuate. The most
common models for time dependent volatility wihin financial modelling are Generalised Autoregressive
Conditional Heteroskedastic (GARCH) models.

Another, more general, class of models are the state space models. The models can be fitted using the
Kalman filter.

ARIMA, GARCH and state space models are part of the time domain analysis of time series in which the
state of the series at time ¢ is related to the state at time ¢ — 1,£ — 2,.... An alternative approach is
frequency domain or spectral analysis which interpret the time series in terms of component sine waves of
various frequencies.

Model building first involves selecting a small number of models on the basis of inspecting the data and
various statistical summaries. The parameters of the models are then estimated and the best model selected.
This model is tested and checked in various ways, to see if there is any structure in the data that has not
been adequately accounted for. If neccessary the model is revised and re-estimated before being used, say
for example, in forecasting.
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2.1 Univariate Time Series

If the analysis of a single series is done without reference to other variables it is called univariate analysis.

2.1.1 ARIMA models

The correlation structure in stationary time series may often be represented by a model with a small
number of parameters belonging to the autoregressive moving average (ARMA) class. Given knowledge of
the characteristic acf (autocorrelation function) and pacf (partial autocorrelation function) patterns of
ARMA models, these sample values may be used to select ARMA models for the series. If the stationary
series w; has been derived by differencing the original series x;, then z; is said to follow an ARIMA
model.

Taking w; = V%, the (non-seasonal) ARIMA (p,d,q) model with p autoregressive parameters
@1,¢2,...,¢0, and ¢ moving average parameters 0,0,,...,0,, represents the structure of w; by the
equation

Wy = Qw1 + ...+ Gpwi—p +ay — Oray—1 — ... — a4 (1)

where a; is an uncorrelated series (often called white noise) with mean 0 and constant variance o2. If w,
has a non-zero mean c, then this is allowed for by replacing wy, w;_1,... by wy —c,w;_; —c,... in the
model. Although c is often estimated by the sample mean of wy, this is not always optimal.

A series generated by this model will only be stationary provided restrictions are placed on ¢y, ¢s,..., ¢,
to avoid unstable growth of w,. These are called stationarity constraints. The series a; may be regenerated
by rewriting the model equation as

ar = Wy — ¢1’U}t_1 — .. — ¢pwt_p + 91at_1 + ...+ ant_q(z) (2)

provided also that the parameters 6,0, ...,0, satisfy the invertibility constraints. The series a; may also
be interpreted as the linear innovations in x; (and in wy); the innovations being the errors if x; were to be
predicted using the information in all past values x; |,z 2, ...,

For a series with short term correlation only, i.e., 7 is not significant beyond some low lag ¢ (see Box and
Jenkins (1976) for the statistical test), then the pure moving average model MA(q) is appropriate, with no
autoregressive parameters, i.e., p = 0.

Autoregressive parameters are appropriate when the acf pattern decays geometrically, or with a damped
sinusoidal pattern which is associated with quasi-periodic behaviour in the series. If the sample pacf ¢, is
significant only up to some low lag p, then a pure autoregressive model AR(p), is appropriate with ¢ = 0.
Otherwise moving average terms will need to be introduced, as well as autoregressive terms.

The seasonal ARIMA (p,d, q, P, D, @, s) model allows for correlation at lags which are multiples of the
seasonal period s. Taking w, = V?V,”z;, the series is represented in a two-stage manner via an
intermediate series ¢;

wy =Prwi_s+ ...+ Ppwi_sxpt+e —Ore_g— ... — QQet_SXQ (3)

€ = ¢1€t,1 + ...+ ¢pet,p +a; — 910471 — .= ant,q (4)

where @; and ©; are the seasonal parameters, and P and () are the corresponding orders. Again, w; may
be replaced by w; — c

2.1.2 Model identification

As already mentioned it is usually advisable to examine a graph of the series as a first step. If the variance
is not constant across the range of observations it may be useful to apply a variance stabilising
transformation to the series.

Differencing operations may be used to simplify the structure of a time series. For example, first order
differencing, that is forming the series Vx; = x; — x;_; will remove a linear trend and first order seasonal
differencing Vsx; = x; — x;_s eliminates a fixed seasonal pattern.
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These operations reflect the fact that it is often appropriate to model a time series in terms of changes from
one value to another. For example, if a series has something of a nature of a random walk, for which
successive steps from one value to another are random, then differencing may be appropriate since the
random walk is by definition the accumulation of independent changes.

Differencing may be applied repeatedly to a series giving w, = V¢V, ”x, where d and D are the orders of
differencing. The derived series w; will be shorter, of length N =n—d—sx D and extend for
t=1+d+sxD,...,n.

The selection of the appropriate order of differencing is largely based on the visual inspection of the series
and its differences, and of the sample autocorrelations and partial autocorrelations of the series.

The term stationarity describes series which appear to have reached statistical equilibrium about a constant
mean level, and for which the other statistical properties such as variance and correlation do not vary with
time.

Sample autocorrelations and partial autocorrelations are useful aids in the process of model identification.
Given that a series is stationary (possibly after a transformation and/or differencing), the correlations, py,
between terms x; and x;,j separated by lag k give an adequate description of the statistical structure and
are estimated by the sample autocorrelations 7. These may be computed using nag tsa auto corr
(gl3abc).

The information in the autocorrelations may also be presented by deriving the coefficients of the
partial autocorrelations which measures the correlations between z; and x;y; conditional upon the
intermediate values w1, Zi2,...,Tsp—1. The sample partial autocorrelations may be computed by
nag_tsa auto_corr part (gl3acc).

2.1.3 ARIMA model estimation

The autocorrelations properties of the model define the likelihood for any finite data set; thus in theory the
parameters of an ARIMA model are determined by a sufficient number of autocorrelations py, p, .. ..
Using the sample values 71,7, ... in their place it is usually (but not always) possible to solve for the
corresponding ARIMA parameters. These are rapidly computed but are not fully efficient estimates,
particularly if moving average parameters are present. They do provide useful preliminary values for an
efficient but relatively slow iterative method of estimation. Estimation of the model essentially means
searching for parameter values which minimise an estimation criterion. For the purpose of defining an
estimation criterion it is assumed that the series a; is a sequence of independent Normal variates having

mean 0 and variance o,2.

The innovations are regenerated from the data for any prescribed parameter values of the model. The early
values have little or no previous data from which the predictions, and thereby the errors a;, can be
calculated. This lack of knowledge about the terms on the right hand side of equation (2) for
t=1,2,...,max(p,q) is overcome using some form of backforecasting.

In all the estimation criteria the main term is a sum of squares function
S = 2(12,5

which is a direct measure of the accuracy of prediction of the model when applied to the given data, since
the innovations a; are the one step ahead prediction errors.

The ideal criterion is the exact likelihood of the data assuming independent Normal (0, o,%) innovations. If
the differenced data wy, w;,,...,wy = w is viewed as a single sample from a multivariate Normal density
whose covariance matrix ¢,2V is a function of the ARIMA model parameters, then the exact log-
likelihood of the parameters is

W'V w.

n a1
_Elog(27m(,, ) — Elog|V| " 302

This exact likelihood criterion considers the set of past values ag,a_1,a_»,... as unobserved random
variables with known distribution. The calculation of the likelihood requires theoretical integration over the
range of this past set. This yields a criteria of the form D = |V|_l/ N'x'S. Use of this quantity as an
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objective function is preferable to the use of .S alone, on the grounds that it avoids appreciable bias in the
ARIMA model parameter estimates and yields a better conditioned estimation problem. However there is a
moderate computational penalty in calculating D.

The least-squares criterion is equivalent to using the quadratic form
WV lw=_8

as an objective function to be minimized. The algorithm used for the least squares criterion is equivalent to
taking the infinite set of past values ag,a_1,a_z,... as nuisance parameters.

Neglecting the term —%10g|V| when using the least squares criteria S yields estimates which differ very
little from the exact likelihood except in small samples, or in seasonal models with a small number of
whole seasons contained in the data. In these cases bias in moving average parameters may cause them to
stick at the boundary of their constraint region, resulting in failure of the estimation method.

The third criterion available is marginal likelihood. This is only distinct from exact likelihood in models
with simple input series, see Section 2.2, or in univariate models if a constant term is fitted, because this is
treated as a simple input. The constant term is effectively treated as a random variable and the marginal
likelihood is the exact likelihood for those components of the data which give no information about c. This
may be expressed as the likelihood for x; — & for t =1,2,...,n or for Va, for t =1,2,...,n. The
marginal likelihood approach is useful for further reducing the bias in the ARMA model parameters,
particularly when modelling a large number of simple inputs.

Approximate standard errors of the parameter estimates and the correlations between them are available
after estimation.

2.1.4 Model checking

The model residuals a; are the innovations resulting from the estimation, and are the main focus of model
checking. A good model should have no significant residual autocorrelations; it is recommended that both
the residual autocorrelations and partial autocorrelations are calculated and graphed. The portmanteau
statistic may be used to get an overall assessment of the size of the acf. It is also useful to see how well the
model forecasts. This may be done by leaving out a few data values from the end of the series and
checking how well the model forecasts these values. There are at present no functions available for residual
checking.

2.1.5 Forecasting

An ARIMA model is particularly suited to extrapolation of a time series. The model equations are simply
used for t =n+ 1,n+2,... replacing the unknown future values of a; by zero. This produces future
values of wy, and if differencing has been used, this process is reversed (the so-called integration part of
ARIMA models) to construct future values of x;. Forecast error limits are easily deduced. These forecasts
may be computed using nag_tsa multi inp_model forecast (gl3bjc).

2.2 Transfer Function Modelling

We now consider multivariate time series in which a single output (dependent) series y; is believed to
depend on a number of input (explanatory) series x;. This dependency may follow a simple linear
regression, e.g.

Yt = 0T + 1y
or more generally may involve lagged values of the input
Yt = V0Tt + V1T—1 + 2Ty + ... + Ny

The sequence vy, vy, vs, ... is called the impulse response function (IRF) of the relationship. The term n;
represents that part of y; which cannot be explained by the input, and it is assumed to follow a univariate
ARIMA model. We call n; the (output) noise component of 1, and it includes any constant term in the
relationship. It is assumed that the input series z; and the noise component n, are independent.
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The part of y; which is explained by the input is called the input component z;:
Zt = VoTt + V1Ti—1 + VT2 + ...
so that Yt = Z =+ ny.

The eventual aim is to model both these components of ¥, on the basis of observations of yi,v,...,¥yn
and zy,x;,...,x,. In applications to forecasting or control, both the input and noise components are
important. In general there may be more than one input series, e.g. x;; and z,;, which are assumed to be
independent and corresponding components zj; and zy;, so that

Y = 21t + 200 + Ny

In a similar manner to that in which the structure of a univariate series may be represented by a finite
parameter ARIMA model, the structure of an input component may be represented by a transfer function

(TF) model with delay time b, p autoregressive-like parameters 01,0, ...,6, and ¢+ 1 moving average-
like parameters wy,wy, ..., wq:
z=01ze1+ 0z o+ ...+ (SpZt,p + WoTs—p — WITt—p—1 — -+ — WyTt_p—q- (5)

If p > 0 this represents an IRF which is infinite in extent and decays with geometric and/or sinusoidal
behaviour. The parameters 0;,0,...,0, are constrained to satisfy a stability condition identical to the
stationarity condition of autoregressive models. There is no constraint on wy,wr, ..., ws.

2.2.1 Model estimation

Given that the orders of all the transfer function models and the ARIMA model of a multi-input model
have been specified, the various parameters in those models may be (simultaneously) estimated.

The innovations are derived for any proposed set of parameter values, by calculating the response of each
input to the transfer functions then evaluating the noise n; as the difference between this response
(combined for all the inputs) and the output. The innovations are derived from the noise using the ARIMA
model in the same manner as for a univariate series.

As in univariate modelling, in estimating the parameters consideration has to be given to the lagged terms
in the various model equations which are associated with times prior to the observation period, and are
therefore unknown. The subroutine descriptions provide the necessary detail as to how this problem is
treated.

As described in Section 2.1.3 three estimation criterion are available; least squares, exact likelihood and
marginal likelihood which is similar to exact likelihood but can counteract bias in the ARIMA model due
to the fitting of a large number of simple inputs.

Approximate standard errors of the parameter estimates and the correlations between them are available
after estimation.

2.2.2 Forecasting

A multi-input model may be used to forecast the output series using nag tsa multi_inp_model forecast
(gl3bjc), provided future values (possibly forecasts) of the input series are supplied. The forecasts are
computed from the model equations replacing the unknown future values of a; by zero.

2.3 Kalman Filters and State Space Models

Kalman filtering can be used for estimating or filtering a multi-dimensional stochastic process X; on which
linear observations Y; are made. The series Y; can be considered as a multivariate time series. The
technique assumes that the processes X; and Y; obey the linear system

Xiv1 = A X; + BW; + D;U; (6)
and the linear observation process
Y, = CX; +V, (7)

where X is the state vector to be estimated, Y; is the measurement vector, U; is the deterministic input
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vector, W; is the process noise, V; is the measurement noise, A; is the system state transition matrix, B; is
the system input weight matrix, C; is the system output weight matrix and D; is the control matrix (where
the subscript ¢ refers to the value of the appropriate quantity at time 7).

The vectors X;, Y;, U; and W; are of dimension n, p, r and m, respectively. The matrices A;, B;, C; and
D; are of dimension n by n, n by m, p by n and n by r, respectively.

Here the process noise and the measurement noise sequences are assumed to be uncorrelated and have zero
mean. This implies that:

E{W;} =0 E{V;} = 0and E{W;V} =0,
and the covariance matrices are
E{WW} = Q; E{VV'} =R,

where the operator /' denotes the “expectation value”, and ); and R; are positive definite matrices. At
instant 4, (; is the process noise covariance matrix whilst R; is the measurement noise covariance matrix.
[Note that in the case of the information filter the first condition is relaxed, i.e., the mean of the process
noise may be non-zero.]

If the system matrices A;, B;, C;, D, and also the covariance matrices ();, R; are known then Kalman
filtering can be used to compute the minimum variance estimate of the stochastic variable X; estimated
from the observed values Y; to Y;

Xy = Xiwi..v, (8)

When j = ¢ the above estimate is called the filtered estimate, and when j = ¢ — 1 it is known as the one-
step predicted estimate, or simply the predicted estimate.

Kalman filtering uses a recursive method which involves computing the state covariance matrices F;; and/
or P;_; and the estimates X, i1i and/or XZ‘Z 1 from their previous values for i = 1,2...

If the covariance of the initial state X, (represented by 1) is known, and the mean of the initial state X
(represented by Xg_;) is given then the following recurrence relations provide the required estimates.

H, =R; + Ci‘PﬂiflCZ‘T )

K; = Py;CTH;' (10)
Py =[I — KiGj|Pyi (11)
X,;‘,; = quq + Ky (12)

where the one step ahead prediction error is given by v; =Y; — CZ-X“Z»_I

7+1\/ APMA +BQBT (13)

Xiji = AiXy; + DiU; (14)

where K is referred to as the Kalman gain matrix and H; contains the covariance matrix of the prediction
errors v;. It can be seen that equations (9), (11) and (13) define the recursion involving the covariance
matrices Pj;_;, FP;; and P ;. These matrices are positive semidefinite and can therefore be factorised
into their Cholesky (““square root™) factors. Equations (11) and (12) yielding Xm and P; from Xm 1 and
Py; 1 are termed measurement-update equations, while equations (13) and (14) yielding X, i1 and Py
from Xj; and P; are known as time-update equations.

2.3.1 The information filter

An alternative set of Kalman filter equations can be constructed which use the inverse of the covariance

matrices. These matrices (e.g +1|1) are also positive semidefinite and are termed information matrices.

[NP3491/6] gl3int.7
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Although the information filter has the disadvantage that it requires the inverses A;! and R;' to be
computed, it is preferable to the covariance filter in situations where there is no (very little) information
concerning the initial state of the system. In these circumstances the covariance filter will fail because the
initial state covariance matrix Fy_; is infinite (very large), whilst the corresponding information filter
initial state PO"ll = 0 (very small) incurs no such difficulties.

The information filter recursion (with D; = 0) is described by the following equations

P = — N;B'M, (15)

i1 —

Pl = Py + CLL R Cia (16)

where M; = (A;I)TP’IA;I

ili

and N; = M;B,[Q;' + BI' M, B;]™

diap = [ — NBT) (A7) gy (17)
it = iy + O R Yi (18)
where G, 1); = 3111\2-Xi+1|7: (19)

and Gy q)iv1 = P,;lll\iHXHqu (20)

2.3.2 Square root filters

The use of the Kalman filter equations previously given can result in covariance matrices which are not
positive semidefinite. This may happen if some of the measurements are very accurate and numerical
computation then involves ill-conditioned quantities. Square root filtering is a technique which overcomes
this difficulty by propagating the covariance matrices in Cholesky (square root) form. This has the
advantage that, despite computational errors, the product of the Cholesky factors will always yield a
positive definite covariance matrix. The numerical conditioning of the Cholesky square root is also
generally much better than that of its corresponding covariance matrix. Since the condition number of the
Cholesky factor is the square root of the condition number of the covariance matrix, square root filtering
can avoid numerical difficulties with only half as many significant digits as the full matrix Kalman filters
outlined above.

2.3.3 The square root covariance filter

The time-varying square root covariance Kalman filter (nag_kalman sqrt filt cov_var (gl3eac)) provided
by this chapter requires the construction of the following block matrix pre-array and block matrix post-
array.

R ¢S 0 H?” 0 0
U= (21)

0 AS BQ” Gi Sit1 O

(Pre — array) (Post — array)

where U, is an orthogonal matrix that triangularizes the pre-array and the matrices Fj;_;, @, H; and R;
have been Cholesky factorised as follows:

Py =S57Q, = Q! (QE/Z)TRi _ R (R,w)THi — g (H}/Z)T

3 (4

where the left factors are lower triangular, and the Kalman filter gain matrix K; is related to G; by
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-1
A = Gy(H'?)
The new state estimate can then be calculated using
Xipi = AiXy + AK(Y; — CiXy1) + DiU; (22)
where the product of the matrices A; and K is represented as AK;.

That this method is computationally equivalent to equations (9)—(14) can be demonstrated by “squaring”
each side of equation (21) (post-multiplying each side by its transpose) and then equating block matrix
elements on either side. It can similarly be shown that transposition of columns 2 and 3 of the pre-array, as
occurs in function nag kalman_sqrt filt cov_invar (gl3ebc), does not affect the elements in the resultant
post-array.

2.3.4 The square root information filter

The time-varying square root information Kalman filter (nag_kalman_sqrt _filt info_var (gl3ecc)) provided
by this chapter requires the construction of the following block matrix pre-array and block matrix post-
array.

Q" 0 0 FA? s

U2| SUAT'B; S A S Xy | = 00 S G (23)
0 RNCiy RYin 0 0  E
(Pre — array) (Post — array)

where the asterisk represents elements that are not required, U, is an orthogonal transformation
triangularizing the pre-array and Fj.;, the matrix containing the innovations in the process noise, is given

by
F\=Q;' + B/ M;B;

The matrices P!, Q;', F;;| and R;' have been Cholesky factorised as follows:

ili i T

Pl =(s7)"s7!

ili

where the right factors are upper triangular.

The new state estimate is computed via

Xi+1\z‘+1 = S?T+l£i+l\i+1 (24)

That this method is computationally equivalent to equations (15)—(20) can be demonstrated by transposing
(23), “squaring™ the right hand side to eliminate the orthogonal matrix U, and then, after performing a
block Cholesky decomposition, equating block matrix elements on either side. It can similarly be shown
that transposition of rows 2 and 3 of the pre-array, as occurs in function nag_kalman sqrt filt info invar
(gl3edc), does not affect the elements in the resultant post-array.

[NP3491/6] gl3int.9
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2.3.5 Time invariant condensed square root filters

When the system matrices A, B, C are time invariant, it can be advantageous to perform initial unitary
transformations to “condense” them (create as many zeros as possible) and thereby significantly reduce the
number of floating-point operations required by the algorithm. Essentially this entails creating an
appropriate unitary transformation matrix U and solving for the new state vector X; = UX in the
transformed reference frame. After the required number of Kalman filter iterations have been performed the
back transformation X = U? X, provides the estimated state vector in the original reference frame. It can
be shown from equations (9)—(14) that the transformed system matrices for the covariance filter are given
by {UAUT, UB, CUT}, which are in agreement with the arguments required by
nag kalman_sqrt filt cov_invar (gl3ebc). It can similarly be shown, from equations (15)—20), that the
system matrices describing the corresponding transformed information filter are {UA-'UT, UB, CUT}.
These correspond to the arguments used by nag kalman sqrt filt info_invar (gl3edc)
(UA-'UT, UA™'B, CUT), where the second matrix is input as the product of UA™'UT and UB. It
should be noted that in the transformed frame the covariance matrix ]Di/li is related to the original
covariance matrix via the similarity transformation P}, = UP;,U Tri(Pi’ )l=U (PZ.'l.l)UTi. This means

(3
that, for square root Kalman filter functions, the appropriate Cholesky factor of Pl."l. must be input.

The condensed matrix forms used by the functions in this chapter are (nag kalman sqrt filt cov_invar
(gl3ebc)) the lower observer Hessenberg form where the compound matrix

UAUT
cur
is lower trapezoidal and (nag_kalman_sqrt filt info invar (gl3edc)) the upper controller Hessenberg form

where the compound matrix (UB|UAUT) is upper trapezoidal.
Both nag kalman sqrt filt cov_invar (gl3ebc) and nag kalman sqrt filt info invar (gl3edc) contain the

block matrix
cur
UB UAU

within their pre-array, and the structure of this matrix (for n = 6, m = 3 and p = 2) is illustrated below
for both Hessenberg forms

Lower observer Hessenberg

z 0 0 0 0 O
z z 0 0 0 O
r xr x zr z x 0 0 O
r T x r z x x 0 0
r T x r z x x x 0
T T x r r x T T T
r T x r r x T T T
r T x r r x T T T
Upper controller Hessenberg

r r x T T T

r r x T T T

r r x T T T

T T r r x T T T

0 «x r r r x x X

0 0 r r r x X X

0 0 0 z z = = «x

0 0 0 0 z =z x «x

0 0 0 0 0 z = =«
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2.3.6 ARMA models and the Kalman filter

Wei (1990) illustrates how an ARMA model can be written as a state space model and Harvey and Phillips
(1979) show how the Kalman filter can be used to construct the likelihood for an ARMA model. Because
of the updating nature of Kalman filters and the presence of a prior covariance matrix Kalman filters are
suitable for the Bayesian approach to statistical inference.

The logorithm of the likelihood for observations at time ¢ = 1,2,...,¢ is given by

1< 1< Tt
I(0) =k — 5; In(det(H;)) — 5;(3/71 — CiXji—1) Hy (Y — CiXy-1)

where k is a constant and H; (and possibly C;) contain unknown parameters 6. The maximum likelihood
estimates of @ can then be found by maximizing /(#) using a suitable optimization function.

2.4 GARCH Models
The standard regression-GARCH (p,q) model is:

Yy = iUth + €11 = N(0, hy)

q p
ht = o+ ZO&,;G?_I + Zﬁihtfj
i=1 j=1

where «,...,p are the autoregressive coefficients, J;,...,q are the moving average coefficient, T is the
number of terms in the series, x; is a vector of exogenous variables, b is a vector of regression coefficients,
¢; are the residuals (shocks), h; is the conditional variance, and ), the set of all information up to time ¢.

Studies on financial time series have shown that they are characterised by increased conditional variance h;
following negative shocks. Since the standard GARCH model cannot capture this asymmetry various
GARCH model extensions have been developed.

The GARCH models included in this chapter are:
Type I AGARCH

q P
he = o + Z a;(€—; + 7)2 + Zﬂiht—j
i=1 =1

Type I AGARCH

q P
hi = o + Zai(|€t—i| + 7€t—i)2 + Zﬂiht—j
i=1 =1

GJR GARCH

q
hy = ap + Z(ai +Sii)er | + Zﬁihtfj

i=1 =1
where S; = 1 if ¢ < O0and S; = 0 if ¢ > 0.

p

In type I AGARCH the asymmetric effects are modelled via the extra parameter . For example, in the
standard GARCH(1,1) model, when h,_; is fixed, h; = h(e;—1) is a parabola in €,_; with a minimum at
€1 = 0. The introduction of the additional parameter  shifts the parabola horizontally so that the
minimum now occurs at ¢,_; = —+. The conditional variance following negative shocks can therefore be
enhanced by choosing v < 0, so that h(—e—1) > h(e—1) for ¢,-1 > 0.

In a type I AGARCH model the inclusion of gamma can also result in an enhancement of h, following a
negative shock €;_;. For a GARCH(1,1) model h(—¢;—1) > h(e_;) when ¢_; > 0 and v < 0.

Similarly in the GJR GARCH(1,1) model the value of h; is increased above the symmetric case when
€1 <0 and v > 0.
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2.5 Spectral Analysis

In describing a time series using spectral analysis the fundamental components are taken to be sinusoidal
waves of the form R cos(wt + ¢), which for a given angular frequency w, 0 < w < 7, is specified by its
amplitude R > 0 and phase ¢, 0 < ¢ < 27. Thus in a time series of n observations it is not possible to
distinguish more than n/2 independent sinusoidal components. The frequency range 0 < w < 7 is limited
to a shortest wavelength of two sampling units because any wave of higher frequency is indistinguishable
upon sampling (or is aliased with) a wave within this range. Spectral analysis follows the idea that for a
series made up of a finite number of sine waves the amplitude of any component at frequency w is given to
order 1/n by

2

R = (1/n?)

n
E X ewt
t=1

2.5.1 The sample spectrum

For a series x1, x>, ...,x, this is defined as

y 1
[Hw) = (271—7r>
the scaling factor now being chosen in order that
2/ ff(w)dw = o2,
0

i.e., the spectrum indicates how the sample variance (02) of the series is distributed over components in the
frequency range 0 < w < 7.

2

)

n
E .’EtGWt
t=1

It may be demonstrated that f*(w) is equivalently defined in terms of the sample autocorrelation function

(acf) ri of the series as
1 n—1
ffw) = <2—) co+2) cpcoskw
& k=1
2

where ¢ = o7, are the sample autocovariance coefficients.

If the series x; does contain a deferministic sinusoidal component of amplitude R, this will be revealed in
the sample spectrum as a sharp peak of approximate width 7/n and height (n/27)R?. This is called the
discrete part of the spectrum, the variance R? associated with this component being in effect concentrated
at a single frequency.

If the series x; has no deterministic components, i.e., is purely stochastic being stationary with acf r, then
with increasing sample size the expected value of f*(w) converges to the theoretical spectrum — the
continuous part

1= (5) <70 230 cos(wk>>

k=1
where ~y; are the theoretical autocovariances.

The sample spectrum does not however converge to this value but at each frequency point fluctuates about
the theoretical spectrum with an exponential distribution, being independent at frequencies separated by an
interval of 27/n or more. Various devices are therefore employed to smooth the sample spectrum and
reduce its variability. Much of the strength of spectral analysis derives from the fact that the error limits are
multiplicative, so features may still show up as significant in a part of the spectrum which has a generally
low level, whereas they are completely masked by other components in the original series. The spectrum
can help to distinguish deterministic cyclical components from the stochastic quasi-cycle components
which produce a broader peak in the spectrum. (The deterministic components can be removed by
regression and the remaining part represented by an ARIMA model.)
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A large discrete component in a spectrum can distort the continuous part over a large frequency range
surrounding the corresponding peak. This may be alleviated at the cost of slightly broadening the peak by
tapering a portion of the data at each end of the series with weights which decay smoothly to zero. It is
usual to correct for the mean of the series and for any linear trend by simple regression, since they would
similarly distort the spectrum.

The unsmoothed sample spectrum is calculated for a fine division of frequencies, then averaged over
intervals centred on each frequency point for which the smoothed spectrum is required. This is usually at a
coarser frequency division. The bandwidth corresponds to the width of the averaging interval.

2.5.2 Cross-spectral analysis

The relationship between two time series may be investigated in terms of their sinusoidal components at
different frequencies. At frequency w a component of y; of the form

R,(w) cos(wt — ¢y(w))
has its amplitude R,(w) and phase lag ¢,(w) estimated by

Ry LOJ Z yt@

and similarly for x;. In the univariate analysis only the amplitude was important — in the cross analysis the
phase is important.

The sample cross-spectrum is defined by

Fray(w (Zyte )(the 2“)

It may be demonstrated that this is equivalently defined in terms of the sample CCF, r,,(k), of the series as

(n—1)
* 1 iwk
fiy(w) =5 > eylk)e

where ¢, y(k) = sysyryy (k) is the cross-covariance function.

The cross-spectrum is specified by its real part or cospectrum cf*(w) and imaginary part or quadrature
spectrum ¢f*(w), but for the purpose of interpretation the cross-amplitude spectrum and phase spectrum
are useful:

A (w) = | [z, W], ¢ (w) = arg(f;,(w))-

If the series x; and ¥, contain deterministic sinusoidal components of amplitudes R, I, and phases ¢, ¢,
at frequency w, then A*(w) will have a peak of approximate width m/n and height (n/27)R,R, at that
frequency, with corresponding phase ¢*(w) = ¢, — ¢,. This supplies no information that cannot be
obtained from the two series separately. The statistical relationship between the series is better revealed
when the series are purely stochastic and jointly stationary, in which case the expected value of f;y(w)
converges with increasing sample size to the theoretical cross-spectrum

Fay(w Z Yy (k)"

where 7., (k) = cov(xs, i)

The sample spectrum, as in the univariate case, does not however converge to the theoretical spectrum
without some form of smoothing which either implicitly (using a lag window) or explicitly (using a
frequency window) averages the sample spectrum f7, (w) over wider bands of frequency to obtain a
smoothed estimate fm,( w).
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If there is no statistical relationship between the series at a given frequency, f,,(w) = 0, and the smoothed
estimate f,,(w), will be close to 0. This is assessed by the squared coherency between the series:

7 2
fao (W) fyy(w)

where fm(w) is the corresponding smoothed univariate spectrum estimate for x;, and similarly for y.. The
coherency can be treated as a squared multiple correlation. It is similarly invariant in theory not only to
simple scaling of z; and y;, but also to filtering of the two series, and provides a useful test statistic for the
relationship between autocorrelated series. Note that without smoothing

|y @) = fra (@), (),

so the coherency is 1 at all frequencies, just as a correlation is 1 for a sample of size 1. Thus smoothing is
essential for cross-spectrum analysis.

If y; is believed to be related to x; by a linear lagged relationship as in Section 2.3, i.e.,
Yt = Voxt + V1Zp—1 + Va2 + -+ + Ny,
then the theoretical cross-spectrum is
fry(@) = V(W) fau(w)

where
V(w) = Gw)e™ = Z vpe™
k=0

is called the frequency response of the relationship.

Thus if z; were a sinusoidal wave at frequency w (and n; were absent), y;, would be similar but multiplied
in amplitude by G(w) and shifted in phase by ¢(w). Furthermore, the theoretical univariate spectrum

fyy(w) = G(“))zfm(w) =+ fn(w)
where n;, with spectrum f,(w), is assumed independent of the input z;.

Cross-spectral analysis thus furnishes estimates of the gain

G(w) = |Foy(W)I/ foa(w)
and the phase

d(w) = arg(foy(w))

From these representations of the estimated frequency response V(w), parametric TF models may be
recognised and selected. The noise spectrum may also be estimated as

fylm(w) = fyy(w)(l - W(w>)a

a formula which reflects the fact that in essence a regression is being performed of the sinusoidal
components of y; on those of x; over each frequency band.

Interpretation of the frequency response may be aided by extracting from V(w) estimates of the IRF 0. It
is assumed that there is no anticipatory response between y; and x;, i.e., no coefficients v, with
k= —1,—-2 are needed (their presence might indicate feedback between the series).
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4  Available Functions

The following functions are for ARIMA modelling:
gl3abc Sample autocorrelation function

gl3acc Partial autocorrelation function

gl3bec  Estimation for time series models

gl3asc  Univariate time series, diagnostic checking of residuals, following
nag tsa_multi_inp model estim (gl3bec)

gl3bjc  Forecasting function

g13bxc [Initialisation function for option setting

g13byc Allocates memory to transfer function model orders

gl3bzc Freeing function for the structure holding the transfer function model orders
gl3xzc Freeing function for use with gl3 option setting

The following functions may be used for Kalman filter computations:

gl3eac One iteration step of the time-varying Kalman filter recursion using the square root covariance
implementation

gl3ebc One iteration step of the time-invariant Kalman filter recursion using the square root covariance
implementation with (A, C') in lower observer Hessenberg form

gl3ecc  One iteration step of the time-varying Kalman filter recursion using the square root information
implementation

gl3edc One iteration step of the time-invariant Kalman filter recursion using the square root information
implementation with (A~', A=!B) in upper controller Hessenberg form

The following functions may be used to compute the required matrices for the time-invariant Kalman filter
recursion:

gl3ewc Unitary state-space transformation to reduce (A, C') to lower or upper observer Hessenberg form

gl3exc Unitary state-space transformation to reduce (B, A) to lower or upper controller Hessenberg form
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The following functions are for spectral analysis:

gl3cbc Univariate time series, smoothed sample spectrum using spectral smoothing by the trapezium
frequency (Daniell) window

gl3cdc Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the
trapezium frequency (Daniell) window

From the computed sample spectrums the following may be computed:

gl3cec Multivariate time series, cross amplitude spectrum, squared coherency, bounds, univariate and
bivariate (cross) spectra

gl3cfc  Multivariate time series, gain, phase, bounds, univariate and bivariate (cross) spectra

gl3cgc Multivariate time series, noise spectrum, bounds, impulse response function and its standard
error

The following functions are for fitting GARCH models.

gl3fac  Univariate time series, parameter estimation for either a symmetric GARCH process or a
GARCH process with asymmetry of the form (e,_; + )

gl3fbc  Univariate time series, forecast function for either a symmetric GARCH process or a GARCH
process with asymmetry of the form (e_; + v)*

gl3fcc  Univariate timezseries, parameter estimation for a GARCH process with asymmetry of the form
(let—1] +ver—1)

gl3fdc  Univariate time2 series, forecast function for a GARCH process with asymmetry of the form
(let—1] 4+ ver-1)

gl3fec  Univariate time series, parameter estimation for an asymmetric Glosten, Jagannathan and Runkle
(GJR) GARCH process

gl3ffc  Univariate time series, forecast function for an asymmetric Glosten, Jagannathan and Runkle
(GJR) GARCH process
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